Copied to
clipboard

G = C23.28C42order 128 = 27

10th non-split extension by C23 of C42 acting via C42/C2×C4=C2

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C23.28C42, (C2×M4(2))⋊9C4, (C2×C4)⋊10M4(2), (C2×C42).43C4, (C23×C4).26C4, (C2×C4).62C42, C2.8(C4×M4(2)), (C22×C4).83Q8, C23.55(C4⋊C4), C24.107(C2×C4), (C22×C4).749D4, C22.45(C2×C42), (C22×C42).14C2, C2.1(C4⋊M4(2)), C2.1(C24.4C4), (C2×C42).983C22, (C23×C4).664C22, C23.245(C22×C4), (C22×C8).370C22, (C22×M4(2)).6C2, C22.33(C2×M4(2)), C23.188(C22⋊C4), C4.11(C2.C42), C22.7C4233C2, (C22×C4).1598C23, C22.7(C2.C42), (C2×C8)⋊21(C2×C4), C4.70(C2×C4⋊C4), C22.50(C2×C4⋊C4), (C2×C4).327(C2×Q8), (C2×C4).117(C4⋊C4), (C2×C4).1489(C2×D4), C4.100(C2×C22⋊C4), (C22×C4).399(C2×C4), (C2×C4).588(C22×C4), C2.5(C2×C2.C42), (C2×C4).249(C22⋊C4), C22.101(C2×C22⋊C4), SmallGroup(128,460)

Series: Derived Chief Lower central Upper central Jennings

C1C22 — C23.28C42
C1C2C22C2×C4C22×C4C23×C4C22×C42 — C23.28C42
C1C22 — C23.28C42
C1C22×C4 — C23.28C42
C1C2C2C22×C4 — C23.28C42

Generators and relations for C23.28C42
 G = < a,b,c,d,e | a2=b2=c2=e4=1, d4=c, ab=ba, dad-1=ac=ca, ae=ea, bc=cb, ede-1=bd=db, be=eb, cd=dc, ce=ec >

Subgroups: 356 in 240 conjugacy classes, 124 normal (14 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, C23, C23, C23, C42, C2×C8, C2×C8, M4(2), C22×C4, C22×C4, C22×C4, C24, C2×C42, C2×C42, C22×C8, C2×M4(2), C2×M4(2), C23×C4, C23×C4, C22.7C42, C22×C42, C22×M4(2), C23.28C42
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C23, C42, C22⋊C4, C4⋊C4, M4(2), C22×C4, C2×D4, C2×Q8, C2.C42, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C2×M4(2), C2×C2.C42, C4×M4(2), C24.4C4, C4⋊M4(2), C23.28C42

Smallest permutation representation of C23.28C42
On 64 points
Generators in S64
(1 55)(2 52)(3 49)(4 54)(5 51)(6 56)(7 53)(8 50)(9 61)(10 58)(11 63)(12 60)(13 57)(14 62)(15 59)(16 64)(17 25)(18 30)(19 27)(20 32)(21 29)(22 26)(23 31)(24 28)(33 42)(34 47)(35 44)(36 41)(37 46)(38 43)(39 48)(40 45)
(1 23)(2 24)(3 17)(4 18)(5 19)(6 20)(7 21)(8 22)(9 44)(10 45)(11 46)(12 47)(13 48)(14 41)(15 42)(16 43)(25 49)(26 50)(27 51)(28 52)(29 53)(30 54)(31 55)(32 56)(33 59)(34 60)(35 61)(36 62)(37 63)(38 64)(39 57)(40 58)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)(33 37)(34 38)(35 39)(36 40)(41 45)(42 46)(43 47)(44 48)(49 53)(50 54)(51 55)(52 56)(57 61)(58 62)(59 63)(60 64)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 63 55 11)(2 38 56 47)(3 57 49 13)(4 40 50 41)(5 59 51 15)(6 34 52 43)(7 61 53 9)(8 36 54 45)(10 22 62 30)(12 24 64 32)(14 18 58 26)(16 20 60 28)(17 39 25 48)(19 33 27 42)(21 35 29 44)(23 37 31 46)

G:=sub<Sym(64)| (1,55)(2,52)(3,49)(4,54)(5,51)(6,56)(7,53)(8,50)(9,61)(10,58)(11,63)(12,60)(13,57)(14,62)(15,59)(16,64)(17,25)(18,30)(19,27)(20,32)(21,29)(22,26)(23,31)(24,28)(33,42)(34,47)(35,44)(36,41)(37,46)(38,43)(39,48)(40,45), (1,23)(2,24)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,44)(10,45)(11,46)(12,47)(13,48)(14,41)(15,42)(16,43)(25,49)(26,50)(27,51)(28,52)(29,53)(30,54)(31,55)(32,56)(33,59)(34,60)(35,61)(36,62)(37,63)(38,64)(39,57)(40,58), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,63,55,11)(2,38,56,47)(3,57,49,13)(4,40,50,41)(5,59,51,15)(6,34,52,43)(7,61,53,9)(8,36,54,45)(10,22,62,30)(12,24,64,32)(14,18,58,26)(16,20,60,28)(17,39,25,48)(19,33,27,42)(21,35,29,44)(23,37,31,46)>;

G:=Group( (1,55)(2,52)(3,49)(4,54)(5,51)(6,56)(7,53)(8,50)(9,61)(10,58)(11,63)(12,60)(13,57)(14,62)(15,59)(16,64)(17,25)(18,30)(19,27)(20,32)(21,29)(22,26)(23,31)(24,28)(33,42)(34,47)(35,44)(36,41)(37,46)(38,43)(39,48)(40,45), (1,23)(2,24)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,44)(10,45)(11,46)(12,47)(13,48)(14,41)(15,42)(16,43)(25,49)(26,50)(27,51)(28,52)(29,53)(30,54)(31,55)(32,56)(33,59)(34,60)(35,61)(36,62)(37,63)(38,64)(39,57)(40,58), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,63,55,11)(2,38,56,47)(3,57,49,13)(4,40,50,41)(5,59,51,15)(6,34,52,43)(7,61,53,9)(8,36,54,45)(10,22,62,30)(12,24,64,32)(14,18,58,26)(16,20,60,28)(17,39,25,48)(19,33,27,42)(21,35,29,44)(23,37,31,46) );

G=PermutationGroup([[(1,55),(2,52),(3,49),(4,54),(5,51),(6,56),(7,53),(8,50),(9,61),(10,58),(11,63),(12,60),(13,57),(14,62),(15,59),(16,64),(17,25),(18,30),(19,27),(20,32),(21,29),(22,26),(23,31),(24,28),(33,42),(34,47),(35,44),(36,41),(37,46),(38,43),(39,48),(40,45)], [(1,23),(2,24),(3,17),(4,18),(5,19),(6,20),(7,21),(8,22),(9,44),(10,45),(11,46),(12,47),(13,48),(14,41),(15,42),(16,43),(25,49),(26,50),(27,51),(28,52),(29,53),(30,54),(31,55),(32,56),(33,59),(34,60),(35,61),(36,62),(37,63),(38,64),(39,57),(40,58)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32),(33,37),(34,38),(35,39),(36,40),(41,45),(42,46),(43,47),(44,48),(49,53),(50,54),(51,55),(52,56),(57,61),(58,62),(59,63),(60,64)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,63,55,11),(2,38,56,47),(3,57,49,13),(4,40,50,41),(5,59,51,15),(6,34,52,43),(7,61,53,9),(8,36,54,45),(10,22,62,30),(12,24,64,32),(14,18,58,26),(16,20,60,28),(17,39,25,48),(19,33,27,42),(21,35,29,44),(23,37,31,46)]])

56 conjugacy classes

class 1 2A···2G2H2I2J2K4A···4H4I···4AB8A···8P
order12···222224···44···48···8
size11···122221···12···24···4

56 irreducible representations

dim1111111222
type+++++-
imageC1C2C2C2C4C4C4D4Q8M4(2)
kernelC23.28C42C22.7C42C22×C42C22×M4(2)C2×C42C2×M4(2)C23×C4C22×C4C22×C4C2×C4
# reps141241646216

Matrix representation of C23.28C42 in GL5(𝔽17)

10000
016000
001600
00010
000016
,
10000
016000
001600
00010
00001
,
10000
01000
00100
000160
000016
,
40000
081500
07900
00001
000130
,
40000
016200
016100
000160
000016

G:=sub<GL(5,GF(17))| [1,0,0,0,0,0,16,0,0,0,0,0,16,0,0,0,0,0,1,0,0,0,0,0,16],[1,0,0,0,0,0,16,0,0,0,0,0,16,0,0,0,0,0,1,0,0,0,0,0,1],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,16,0,0,0,0,0,16],[4,0,0,0,0,0,8,7,0,0,0,15,9,0,0,0,0,0,0,13,0,0,0,1,0],[4,0,0,0,0,0,16,16,0,0,0,2,1,0,0,0,0,0,16,0,0,0,0,0,16] >;

C23.28C42 in GAP, Magma, Sage, TeX

C_2^3._{28}C_4^2
% in TeX

G:=Group("C2^3.28C4^2");
// GroupNames label

G:=SmallGroup(128,460);
// by ID

G=gap.SmallGroup(128,460);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,2,-2,112,141,232,1430,172]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^2=e^4=1,d^4=c,a*b=b*a,d*a*d^-1=a*c=c*a,a*e=e*a,b*c=c*b,e*d*e^-1=b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c>;
// generators/relations

׿
×
𝔽